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Abstract—The area of distributed ledgers is a vast and quickly
developing landscape of consensus protocols. This makes it
considerably hard to gain a comprehensive overview of the
current state of protocols. Many of those trade one property
for another and there does not seem to be a widely accepted and
clear winner in the race for the best protocol.

This paper aims at providing an overview of most of the
recent directions in this landscape, not claiming completeness.
Instead of completeness, it targets to deliver a solid basis for
discussions about current and future developments in the field
of distributed ledgers, emphasising scalability. Besides purely
consensus-based scalability and sharding, we also explore off-
chain scalability solutions and recent advances and implications
in privacy-preserving protocols.

I. INTRODUCTION

Blockchains or distributed ledgers in general and cryp-
tocurrencies, in particular, are instances of replicated state
machines. In a cryptocurrency, clients generate and submit
transactions. A network of nodes receives and processes them,
thereby changing the replicated state according to predefined
rules. When abstracting away the implementation details,
the problem ultimately boils down to building a globally-
consistent, totally-ordered, append-only transaction log. In
traditional literature, such a primitive is called total order or
atomic broadcast [1].

In such a system, nodes receive transactions as input and
have the goal to agree on the ordering of these transactions.
Informally, we require two main properties from such a
primitive: liveness and safety, which can be divided into
further properties as discussed in other works [2], [3]. Liveness
describes the property that requests from a correct client
will be eventually processed, whereas safety (or consistency)
describes that if one honest client accepts a value, then all
other honest nodes make the same decision.

The area of distributed ledgers is a vast and quickly
developing landscape of consensus protocols. This makes it
considerably hard to gain a comprehensive overview of the
current state of protocols. Many of those trade one property
for another and there does not seem to be a widely accepted
and clear winner in the race for the best protocol.

This paper aims at providing an overview over most of the
recent directions in this landscape, not claiming completeness.
Instead of completeness, it targets to deliver a solid basis for
discussions about current and future developments in the field
of distributed ledgers.

We emphasise scalability, which considers transaction
throughput as one of the most important properties. That
is because, generally, a property that distinguishes payment
networks from traditional consensus systems is that the former
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are not so much latency critical, but favour a high throughput.
For example, the Visa network processes 2,000 transactions
per second (tx/sec) on average, with a peak capacity of 56,000
tx/sec1.

In this paper, we divide today’s advances in consensus
related research into four categories:

1) traditional consensus protocols (mostly in closed set-
tings, e.g. PBFT [4]),

2) Proof-of-Work based consensus protocols (e.g. Bitcoin),
3) Proof-of-X based consensus protocols (replacing PoW

with more energy efficient alternatives),
4) and hybrid protocols that constitute compositions of the

aforementioned categories.
From these categories, we also derive our organisation as
described below.

Besides purely consensus-based scalability and sharding, we
also explore off-chain scalability solutions and recent advances
and implications in privacy-preserving protocols.

A. Organisation

We start by introducing some of the basic results in con-
sensus theory in Section II, before we explain the basic
building blocks in Section III – spanning traditional consensus
protocols, Proof-of-Work, and Proof-of-X. In Section IV, we
discuss how protocols for a closed set of participants can be
transformed into open networks, providing the basis for hybrid
protocols.

Then, we organise the protocols presented in this paper
into further categories in Section V, which are Proof-of-Work-
based protocols in Section VI, Proof-of-Stake-based protocols
in Section VII, hybrid protocols in Section VIII, DAG-based
protocols in Section IX, protocols leveraging a chain per
account in Section X, leaderless protocols in Section XI, and
finally sharding protocols in Section XII.

We also explore the direction of off-chain scalability solu-
tions in Section XIV and discuss advances and implications
of privacy-preserving protocols in Section XV.

Lastly, we refer the reader to interesting, related literature
in Section XVI and conclude in Section XVII.

II. BASIC RESULTS

There are two basic results in consensus theory, which
motivate most of the trade-offs. One states the impossibility of
achieving consensus in a fully asynchronous system, the other
one gives an upper limit on the number of Byzantine nodes
in a deterministic, reliable system.

Before discussing these results, we first need to understand
what it means for a system to be synchronous or asynchronous.

1See Visa Fact Sheet 2015: https://usa.visa.com/dam/VCOM/download/
corporate/media/visa-fact-sheet-Jun2015.pdf
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1) Synchrony: In a synchronous system, messages will
always arrive within a maximum, known delay of ∆.

2) Asynchrony: In an asynchronous system, messages may
be delayed arbitrarily, and there does not exist a reliable
bound.

3) Partial/Weak Synchrony: A partial or weak syn-
chronous system assumes the network to become even-
tually synchronous, despite potentially a long period of
asynchrony.

A. FLP Impossibility Result

The FLP impossibility result proves the impossibility of
achieving and maintaining consensus in a system of dis-
tributed, deterministic asynchronous processes if even a single
process could crash [5]. There are two ways to overcome this
impossibility result:

1) using weak or partial synchrony (two equivalent proper-
ties), often also relying on leaders who can be skipped
if they are suspected of misbehaving or not responding,

2) or using non-determinism and randomisation.
While the second option is typically slower (but requires
less communication), recent advances have been made that
achieve considerable improvements in speed (e.g. HoneyBad-
gerBFT [3]).

Practical Byzantine Fault Tolerance [4] is one of the most
prominent examples overcoming the impossibility result using
leaders. However, PBFT is not suitable for a cryptocurrency
scenario without further modifications. An example of the sec-
ond category is Bitcoin’s Nakamoto consensus, which employs
a Proof-of-Work algorithm to make consensus probabilistic.

B. The Byzantine General’s Problem

The Byzantine General’s Problem describes the problem
of creating a reliable, deterministic, decentralised consensus
system in which Byzantine nodes can provide contradicting
information (e.g. voting on different blocks at the same
height). The corresponding paper by Lamport et al. [6] proves
that such a system can only exist if at most bn−1

3 c nodes are
Byzantine.

III. BASIC BUILDING BLOCKS

Achieving consensus is not a modern problem. While there
are many recent advances and a lot of new requirements
shaped by the cryptocurrency and blockchain industry, the
general question has been discussed for decades. In order to
understand many of today’s protocols, it is necessary to explain
a few of the basic building blocks and algorithms.

In particular, we discuss the building blocks of the following
categories of protocols:

1) classical consensus protocols (mostly in closed settings)
with the distinction between

• Byzantine fault tolerance
• and non-Byzantine fault tolerance,

2) Proof-of-Work-based consensus protocols (e.g. Bitcoin),
3) Proof-of-X-based consensus protocols (replacing PoW

with more energy efficient alternatives) including

• Proof-of-Stake
• and other alternatives,

4) and hybrid protocols that constitute compositions of the
aforementioned categories.

A. Practical Byzantine Fault Tolerance

As the name states, Practical Byzantine Fault Tolerance [4]
(PBFT) was the first system designed to provide Byzantine
Fault Tolerance in a fast and practical way. It is based on
the advancements made in the DLS paper [7] (see Sec-
tion XVIII-A). Previous algorithms either assumed an unrealis-
tic, synchronous system or were too slow to work in practice.
The PBFT algorithm allows replicating a deterministic state
machine including its common state in a network of n nodes.
It offers both liveness and safety provided at most bn−1

3 c
out of n nodes are faulty. Or equivalently, if f nodes are
considered Byzantine, it offers resilience against Byzantine
faults for n ≥ 3f+1 Therefore, the resiliency of this algorithm
is optimal for a BFT protocol.

The system model of PBFT assumes an asynchronous
distributed system, in which the participants are a closed and
well-defined set of nodes. One of these nodes is the leader;
the other nodes are called backups. The network may fail to
deliver messages, delay them, duplicate them, or deliver them
in a different order. In general, BFT algorithms are optimised
to work in deployment scenarios in which CPU and latency
are the main bottlenecks.

The algorithm works in three phases:
1) Pre-Prepare: The leader sends out the information that

must be agreed upon to the other nodes.
2) Prepare: Each node checks the validity of the pre-

prepare and, upon success, sends back a prepare mes-
sage.

3) Commit: After receiving at least 2f + 1 prepare mes-
sages, a node enters the prepared state and sends out a
commit message.

Then, after receiving at least 2f + 1 commit messages, the
state change is executed. To overcome the FLP impossibility
result, the liveness property requires a form of weak or partial
synchrony, which is achieved through delays and timeouts.

The leader in PBFT generally remains in his role and is
replaced only if suspected faulty. In this case, PBFT provides
a view-change protocol to jointly agree on changing the leader.

However, Miller et al. [3] have shown that PBFT-like
algorithms can be halted arbitrarily long if the adversary has
arbitrary control over the network and the ability to crash any
node at a time. The throughput of weakly synchronous pro-
tocols degrades substantially in the presence of unpredictable
network behaviour. Moreover, it is often unclear, how to set
timeout parameters in a real-world network.

Note that the nature of the PBFT algorithm requires a
quadratic number of message exchanges (between the partici-
pants), i.e. a communication complexity of O(n2). Moreover,
throughput is limited by the current leader’s bandwidth. There
have been many proposals to improve PBFT-like protocols,
mainly through optimistic execution.
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PBFT and similar, traditional consensus protocols rely on
replication mainly to achieve resilience against faulty (or ma-
licious) nodes, not to achieve a scalable system. In particular,
mechanisms such as sharding of resources have not been any
concern, with a few exceptions (e.g. a work by Gray and
Lamport [8]).

B. Non-Byzantine Fault Tolerance

There are several notable algorithms in the field of non-
Byzantine fault tolerance. Two of them are Paxos [9] and
Raft [10]. While the underlying protocols are similar to PBFT,
one key difference to PBFT (and all BFT protocols) is that
those non-Byzantine algorithms can only tolerate crash-faults
(up to 1

2n of the nodes), whereas Byzantine algorithms can
tolerate arbitrary (including maliciously) corrupted nodes.

In contrast to Paxos, Raft was designed with the goal
of providing an understandable protocol. Moreover, it uses
randomisation to improve the leader election.

C. Proof-of-Work

Proof-of-Work (PoW) is a term referring to an algorithm
that ensures a provable, randomised, and Sybil-attack-resistant
selection of a leader (or block producer) based on partial hash
collisions. Moreover, it serves the purpose of defining the
main chain of blocks as the chain with the largest cumulative
difficulty. The difficulty of a PoW is proportional to the size of
the partial hash collision. PoW-based protocols inherently need
to rely on incentivisation mechanisms to enforce security [11].

Used in Bitcoin’s Nakamoto consensus, PoW is able to
overcome the FLP impossibility result. Its gossip protocol does
not require quadratic communication overhead.

While PoW-based systems are often said to be secure as
long as the majority (> 50%) of nodes are honest, most such
systems suffer from additional attack vectors such as selfish
mining [12] – effectively reducing the amount of malicious
actors needed to about 25%.

Probably, the most significant drawback of PoW-based
protocols is the immense energy consumption, which does
not produce anything of use. This led to a plethora of new
consensus protocols being proposed, including more energy
efficient replacements such as Proof-of-Stake. Moreover, some
proposals have been made to introduce proofs of useful
work [13].

1) Mining Pools: Many miners in traditional PoW-based
systems join so-called mining pools to reduce the variance
of their rewards. However, such mining pools effectively lead
to centralisation and thwart transaction censorship resistance,
because a malicious pool owner can control which transactions
should be mined by his pool.

There have been a few proposals to create decentralised
mining pools [14], [15], and Nimiq currently advocates their
own such solution.

D. Proof-of-Stake

The term Proof-of-Stake (PoS) generally refers to any
system where block proposals are made and voted on by those,

who can prove ownership of a stake of coins in the network.
PoS is often proposed as an energy-efficient alternative to
PoW.

It is common for PoS protocols to elect a leader from
within the stakeholders, who is then responsible for appending
transactions to the blockchain during a specified epoch of time.
Such a leader election may be public (e.g. Ouroboros [16]) or
private (e.g. Ouroboros Praos [17]). In a private leader election,
each node needs to check whether it will be the next leader
using its private information but then can prove to others using
only public information that it is indeed the next leader. Such
a design makes it impossible for others to predict and carry
out DoS attacks against the next leader until it is too late.

Naive implementations of a PoS system are vulnerable to
nothing-at-stake attacks, i.e. validators can vote in favour of
multiple conflicting blocks at the same height. These attacks
are usually mitigated by a mechanism known as slasher [18].
Validators must not only prove ownership over their stake but
must also place a security deposit, which will be burned if the
validator is found to propose or vote for conflicting blocks.

Another type of attack is called grinding attack and gener-
ally describes a scenario, in which a miner or leader repeatedly
recreates the next block secretly in order to influence the next
leader election. Such an attack is only possible if the leader
election depends on input that can be biased by the miner
or leader. Hence, mitigation techniques include the use of a
unbiasable source of randomness.

Finally, PoS protocols can be susceptible to long-range
attacks, i.e. a participant can bribe other participants to sell
their private keys. Such an attack works if the stake is
determined by the historic stake and the bribed participants
have already moved out their funds. The sold private keys
can then be used to increase the voting power of a malicious
participant.

Variants of PoS include:
• Proof-of-Deposit: Stake needs to be locked away in order

to participate.
• Proof-of-Burn: Stake needs to be destroyed in order to

participate.
• Proof-of-Coin-Age: Stake is weighted by coin-age.
An advantage over PoW is that the cost of attacks in PoS

is always proportional to the market capitalisation, whereas
in PoW systems, efficient technology enables much cheaper
attacks at only the value of the reusable technology.

E. Proof-of-X

Replacements for PoW other than PoS have been proposed
as well. The two most notable approaches are Proof-of-
Capacity (or Proof-of-Space) and Proof-of-Elapsed-Time.

Examples of Proof-of-Capacity-based protocols are Perma-
Coin and SpaceMint. Proof-of-Capacity often requires partici-
pants to store large amounts of data as part of the proof. Hence,
a design challenge for Proof-of-Capacity-based protocols is
their resilience to centralisation in the form of outsourcing the
storage to a centralised service.

3



DRAFT

All currently known approaches for Proof-of-Elapsed-Time
rely on trusted computing environments such as Intel SGX.
Therefore, breaking one such trusted computing environment
gives an attacker unlimited power to attack the system.

IV. FROM CLOSED TO OPEN NETWORKS

A lot of protocols are designed to work in closed networks
only, with participants known upfront. Thus, to employ such
a protocol in a non-permissioned, open blockchain, it is
necessary to choose a subset of all participants that then is
closed and well-defined. Such a subset is often selected for a
limited time only, called epoch. Prominent names for such a
subset are validator set or committee. After each epoch, the
committee can either change wholly or partially. Moreover,
different criteria can be applied to select the new committee
members.

A. PoW-based Selection

The most straight-forward selection criterion is probably
PoW. The participant who can solve a PoW puzzle first will
replace the oldest member of the previous committee. Such
an approach results in a rolling window committee, replacing
a single member each epoch. ByzCoin [19] is an example
protocol that uses this leader selection algorithm.

One issue that arises from PoW-based selection is leader
contention, i.e. multiple protocol participants solve the PoW
puzzle at the same time.

B. Public Randomness-based Selection

Other selection criteria include verifiable randomness or
cryptographic sortition (see Section XVIII-B2) protocols. Such
algorithms often take previous blocks as input to generate
randomness or alternatively rely on multi-party coin-tossing
protocols. They can be used either to replace the whole
committee at once, or to replace a subset of the oldest members
of the committee. Algorand [20] and Snow-White [21] are
examples for such protocols replacing the full committee each
epoch. Omniledger [22] is an example that only replaces a
subset of the committee.

For such protocols, it is essential to prevent malicious
committee members from being able to influence the result
of the next committee selection.

V. PROTOCOLS

In the following sections of this paper, we will discuss a
selection of consensus protocols representative for the vast
space. We will categorise the protocols into seven different
areas, each focusing on different protocol aspects.

1) PoW-based blockchains: This area includes examples
of simple PoW-based blockchains and improvements.

2) PoS-based blockchains: This area focuses on PoS-
based blockchain protocols.

3) Hybrid protocols: This area focuses on protocols com-
bining traditional consensus protocols and PoW- or PoS-
based solutions.

4) DAG-based protocols: This area explores protocols that
extend the simple notion of a blockchain to directed
acyclic graphs.

5) Separate Account Chains: This area discusses proto-
cols that aim to create a single chain per account.

6) Leaderless protocols: This area includes protocols that
do not require a leader or designated committee, some
of them being simple closed-network BFT protocols.

7) Sharding: Lastly, we look at protocols that promote
sharding in blockchains.

It should be noted that this is just one way to organise those
protocols.

Due to the large number of protocols, we put each of those
areas into their own section.

VI. POW-BASED BLOCKCHAINS

Bitcoin is the first and still most prominent example of
a PoW-based blockchain. Hence, much work has been car-
ried out in proposing possible improvements to Bitcoin-like
blockchains. In this section, we will briefly introduce Bitcoin
and Bitcoin-NG. Bitcoin-NG is an academic approach to
improve Bitcoin’s scalability and the basis for many other
protocols.

A. Bitcoin’s Nakamoto Consensus

Bitcoin [23] uses a Proof-of-Work-based consensus algo-
rithm, which only provides probabilistic guarantees and no
finalisation. As mentioned before, one of its key advantages
over PBFT-based algorithms is that it does not require a
quadratic communication overhead, but instead relies on a
gossip protocol. Moreover, it works in open, permissionless
systems without modifications. Due to the choice of PoW,
Bitcoin is only able to offer weak consistency.

Several protocol-level attacks (e.g. selfish mining [12]) exist
that lower the effective security threshold of Bitcoin to well
below 50% (about 25%).

B. Bitcoin-NG

Bitcoin-NG [24] relies on the same security and trust model
as Bitcoin but improves performance by separating leader
election from transaction serialisation. To this end, Bitcoin-
NG distinguishes between key blocks and micro blocks.

Key blocks are similar to regular Bitcoin blocks (just
without any transactions) and are used to select the current
leader. Then, once the leader is chosen, it is entitled to serialise
transactions unilaterally into micro blocks. Micro blocks can
be much more frequent than key blocks.

In order to correctly align the incentives of the next key
block miner to build upon the latest micro block, transaction
fees are shared between both the current micro block producer
(40%) and the next leader (60%). The authors also justify the
choice of this split.

Since micro blocks are not secured by PoW, they are cheap
to fork and thus could lead to double-spending attacks. This
is disincentivised by allowing others to report such behaviour
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using a poison transaction, which invalidates the revenue of a
fraudulent leader.

Temporary forks due to multiple key blocks being mined at
the same instant can cause the system (similar to Bitcoin) to
be in an inconsistent state until the fork is properly resolved.
This can take 10 minutes or even more.

VII. POS-BASED BLOCKCHAINS

Ouroboros [16], Ouroboros Praos [17], and Snow-
White [21] all are PoS-based protocols. One of the most
interesting differences between them is their leader election
process.

In Ouroboros, a subset of all stakeholders first runs a multi-
party coin-tossing protocol to agree on a random seed, which
is then fed into a pseudo-random function that elects a leader
from among them weighted by the stake. The same random
seed is also used to determine the subset of stakeholders for
the next epoch. Rewards are distributed among all members
of the subset. This is an example of a public leader election
process. Ouroboros requires most participants of the coin-
tossing protocol to be incorruptible by an adversary for the
whole epoch.

Ouroboros Praos and Snow-White employ a private leader
election process. While Snow-White relies on a PoW and
a weakly synchronised clock, Ouroboros Praos uses a ver-
ifiable random function (similar to Algorand [20], see Sec-
tion VIII-D).

VIII. HYBRID PROTOCOLS

This section discusses protocols that are inspired by classic
BFT consensus systems, such as PBFT [4], combining such
classic protocols with PoS or PoW into a hybrid protocol.

In particular, we will start with Tendermint, a blockchain
protocol bringing PBFT to the open, permissionless setting.
Among other protocols, we also introduce ByzCoin, a protocol
that dramatically improves upon many of PBFTs caveats in
an open blockchain. Finally, we take a look at Algorand, a
protocol involving public randomness.

A. Tendermint

Tendermint is a consensus protocol proposed in 2016 [25].
It closely follows the PBFT model but is designed to be more
practical. The consensus algorithm can be divided into the
following components:

1) Proposals: Each new block is proposed by the current
leader, which changes between rounds (roughly corre-
sponds to PBFT pre-prepare).

2) Votes: Two phases of voting called pre-vote and pre-
commit (corresponds to PBFT prepare and commit),
before a block is called a commit.

3) Locks: This is an additional mechanism, preventing
nodes (validators) to commit to more than one block
at the same height. It is crucial that such a locking
mechanism is implemented in a way that does not
compromise liveness.

One difference to PBFT is that the leader is rotated in every
round, which makes skipping a faulty leader much easier and
reduces the communication overhead in this case significantly
(there is no need for running a leader election protocol since
the new leader can be determined deterministically from the
validator set).

In order to determine and change the closed set of validator
nodes, Tendermint takes an approach similar to Raft [10].
Validator set changes must pass through consensus.

Tendermint provides full accountability for validators, i.e.
they can be proven to have acted maliciously. If there is a
proof of misbehaviour, a validator can be punished. This can
be achieved through a PoS protocol.

The communication complexity of Tendermint is O(n2).

B. Casper

Casper [26] is a generalisation of Tendermint. It has been
proposed as a possible PoS protocol for Ethereum (which
currently still employs a PoW consensus).

C. ByzCoin

ByzCoin [19] is a PBFT-based protocol ported to an open
setting. PoW is used to determine a rolling window validator
set, with the leader being the latest PoW winner. ByzCoin
also adapts Bitcoin-NGs [24] concept of key blocks and micro
blocks but considers them as two separate chains. The key
block chain is used to determine the validator set and leader
via PoW. Both chains are secured using PBFT, but only the
micro block chain contains the transactions.

The authors of ByzCoin dramatically improve upon a naive
PBFT implementation in four key areas:

1) Open membership: ByzCoin uses the PoW from key
blocks to determine the validator set (e.g. 144 last
block producers), giving recent miners voting power
proportional to their recent hash power.

2) Scalability to hundreds of validators: While PBFT
is only designed for small environments (typically not
more than 16 replicas), ByzCoin uses CoSi [27] (com-
munication tree-based collective Schnorr signatures) in
order to reduce the costs of PBFT rounds and also the
costs for light clients to verify a transaction commit-
ment. Light clients must only verify a single, collective
signature (O(1)) instead of the individual signatures of
the super-majority of validators (O(n)).

3) Transaction commitment rate: Like Bitcoin-NG, Byz-
Coin relies on separating leader election (key blocks)
from transaction ordering (micro blocks) to achieve
higher throughput. However, Bitcoin-NG uses a single
blockchain for both type of blocks, which creates a race
condition between the latest micro block and the next
key block. Hence, ByzCoin separates both types into
their own blockchains.

4) PoW block conflicts: If two key blocks are mined si-
multaneously, a high-entropy, deterministic prioritisation
function is used to break the tie. By using all competing
blocks’ header hashes as an input, selfish mining can be
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mitigated. However, PoW block conflicts can still lead
to a temporary interruption of liveness: if one part of the
validators already committed to one of the blocks, while
another part committed to a different block, consensus
can stall until the next key block is found.

Usage of CoSi signatures also reduces the communication
complexity from O(n2) to O(log n), since validators only
need to communicate along the tree. However, practical issues
apply if some validators are offline during the collective
signing process (which takes two rounds, just as in Schnorr
multisignatures): the CoSi protocol can still proceed, but the
size of the resulting signature needs to grow in order to
accommodate metadata documenting who did participate and
who did not. If the leader suspects liveness of the CoSi scheme
being compromised, it can revert to a flat O(n) collective
signature scheme, without involving a tree-based optimisation.

ByzCoin forms a hash power-proportionate committee and
can achieve a near-optimal tolerance of f faulty committee
members among 3f + 2 in total. Their evaluation suggests a
throughput of around 1000 txs/sec, offering strong consistency.

ByzCoin – like many BFT protocols – is vulnerable to
slowdown or temporary DoS attacks that Byzantine nodes
can trigger. A Byzantine leader might temporarily exclude
minorities (< 1

3 ) from the consensus process.
In contrast to Bitcoin, ByzCoin is less prone to eclipse at-

tacks, since an attacker cannot convince a victim into accepting
an alternate attacker-controlled transaction history. In order to
carry out such an attack, the attacker would need to control
two-thirds of the voting power at some point of the chain in
the first place.

In contrast to ByzCoin, Tendermint – which also imple-
ments a PBFT-like algorithm – only considers small validator
sets (up to 64) and does not address link-bandwidth between
the validators.

D. Algorand

Algorand [20] uses a novel Byzantine Agreement (BA)
protocol and Verifiable Random Functions (VRF) for the
committee election. It guarantees that the probability for forks
is negligible, which is a significant advantage over classical
PoS systems as it mitigates attacks such as the nothing-at-
stake problem. The design of their protocol is such that it
allows scaling to hundreds of thousands of participants.

A key feature of Algorand is that no participant needs to
keep private state. Although the BA protocol employs multiple
rounds, the committee is reelected for every such round and
a committee member always only performs a single vote.
Participants need to find out in private whether they were
elected and then publish a single message in their term as a
committee member. This feature makes Algorand committee
members resistant against targeted DoS attacks since the
committee members are only then known to the attacker, when
they have already served and published their vote. Other hybrid
consensus designs are only secure with respect to a mildly
adaptive adversary that needs more time to compromise the
committee than the epoch they serve in.

The BA protocol does not require leaders (except for the
block proposal). To prevent Sybil attacks, Algorand weighs
participants by their stake in the system (similar to PoS).
Cryptographic sortition allows electing the committee based
on these weights. Weighing by stake implicates the security
requirement that 2

3 of all funds belong to honest users. Con-
versely, an attacker must invest substantial financial resources,
before a successful attack can be carried out.

To achieve liveness, Algorand assumes strong synchrony,
whereas safety only requires weak synchrony. Moreover, Al-
gorand assumes loosely synchronised clocks across all users.
Thus it requires stricter assumptions on the network than
other solutions. Communication in Algorand is gossip based,
resulting in a similar communication complexity as is the case
for Bitcoin.

Blocks in Algorand can either reach tentative consensus
or final consensus. A block with final consensus will also
transitively finalise the consensus for previous blocks with
tentative consensus (since final blocks are totally ordered). The
BA algorithm may declare tentative consensus, if it cannot
confirm the absence of other blocks, e.g. due to network
asynchrony. Blocks are proposed by a block proposer, who
is chosen as the participant which can prove to have the
lowest random value output by his VRF. In practice, the gossip
protocol ensures that only those blocks with a proof for the
lowest value are actually propagated throughout the network.

Committees (that are changing in every BA step) then try to
agree on a block. This is done in two phases. The first phase
reduces agreement on any block to the problem of agreeing
to one of two options: agreeing on the empty block or on
a single proposed block. The second phase then serves the
purpose of agreeing on one of these two options. In each
step, committee members cast a vote for a value, and every
participant (not restricted to the committee) counts the votes.
Algorand requires users to keep track of potential forks and
resolve them using a recovery protocol in regular intervals
using a fork proposer.

The input to the randomness primitives is a random seed,
which is provably generated using the block proposer’s VRF
from the previous seed. This requires bootstrapping the system
with a start seed, ideally chosen through distributed random
number generation.

Algorand can achieve up to 875 txs/sec, in comparison with
Bitcoin achieving 7 txs/sec.

Limitations of the Algorand protocol (left for future work)
include missing incentive systems and missing forward secu-
rity. Since Algorand certifies the consensus to new users, an
attacker managing to obtain enough user keys could create a
fake certificate and thus a fork.

E. Seagull

Seagull is a proposal by Franca et al. from Trinkler Software
for their blockchain-based financial system called Katallassos.
It represents a mix between PoS and PBFT [4] inspired by
ByzCoin [19].
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In this protocols, validators need to signal their interest by
locking collateral. At any point in time, they can withdraw
their interest and unlock their collateral after a cool down
period. For practical reasons, they allow validators to choose
a different signing key than the one corresponding to their
account.

The validator set is fully replaced in every key block
(instead of a rolling window as in ByzCoin). It is sampled
from a random seed generated using the same scheme as
Ouroboros. The micro blocks between two key blocks are
therefore divided into three phases with recurring leaders.

1) To generate the random seed for the next round, each
micro block leader, in the first phase, needs to create
a random value. A cryptographic commitment to this
value is put into the micro block. Moreover, a verifiable
secret sharing scheme is used to create shares of this
value, such that a threshold of those can be used to
recover the value. Each share is encrypted for one of
the other validators and put into the block as well.

2) In the second phase, honest validators will reveal their
commitment.

3) In the third phase, honest validators can use their en-
crypted shares to reconstruct the random values from
such validators that have not opened their commitment.

Then, all random values will be incorporated into the entropy
for the next round.

Since Katallassos relies on an accounts tree, syncing the
blockchain can be easily done by downloading all key blocks,
the accounts tree, and only the micro blocks since the latest
key block.

IX. DAG-BASED PROTOCOLS

Another whole category of distributed ledger protocols are
those based on directed acyclic graphs. Strictly speaking, these
are not blockchain protocols, but rather block-graph protocols.

GHOST is one such protocol that is still very close to
Bitcoin, as it uses the graph only to determine the correct main
chain. The Inclusive Blockchain Protocol is another example
of such a protocol. Finally, we will introduce Spectre, which
does not require the notion of the main chain any more.

A. GHOST

The GHOST protocol [28] describes a modification of
Bitcoin’s chain selection algorithm. Its goal is to improve
resilience and scalability of Bitcoin by including blocks that
are not on the main chain into the chain selection. Instead of
choosing the chain with most cumulative work, this algorithm
chooses the heaviest chain as the main chain. The weight of
a block is calculated from the size or cumulative work of its
subtree.

The main limitation of this approach is that the full tree
needs to be available to all nodes. Also propagating those
blocks outside the main chain, however, makes the system
much more vulnerable to DoS attacks.

B. Inclusive Blockchain Protocol

The Inclusive Blockchain Protocol [29] proposes the use of
block-DAGs. In contrast to the next protocol, Spectre [30],
it still relies on a simple chain-based protocol to provide a
total order over blocks. The authors provide a comprehensive
game-theoretic analysis of their protocol.

C. Spectre

Spectre [30] is a PoW-based protocol that allows miners
to mine blocks concurrently and structures those blocks in a
block-DAG instead of a linear blockchain. A key ingredient
of Spectre is loosening the properties in comparison to what
classical consensus requires. Instead of requiring that the order
between transactions must be decided and agreed upon by all
honest participants, Spectre requires this only for transactions
performed by honest users. Spectre can guarantee that security
in the presence of double spending but may delay the decision
regarding double spends arbitrarily.

By maintaining a full DAG, miners can create blocks more
frequently and concurrently. There is no need to agree on a
single main chain, nor do mining nodes need to know the
propagation delay in the network. More frequent blocks do
also benefit the decentralisation, since rewards will be much
more frequent, reducing the need for mining pools.

The block creation and communication instructions in Spec-
tre are simple: When a new block is received or created, it
is gossiped to all peers. When creating a new block, a list
containing the hash of all leaf blocks in the locally-observed
DAG is embedded (this list can be limited in size).

In order to verify which and whether transactions have been
accepted, Spectre defines a pairwise relation x ≺ y over
the blocks (informally, they say x precedes or defeats y).
Using this relation, nodes can identify accepted transactions
and quantify how robust the acceptance is (i.e. a bound on
the finality). It is important to note that the relation is not
transitive. The relation coincides with Bitcoin’s longest-chain
rule in the case of a simple fork between two chains. It is able
to prevent censorship and double spend attacks.

A transaction is accepted with certain robustness if the block
containing it robustly precedes (or defeats) all counterparts
(and conflicting transactions). The relation has the property
that, once a block is published, the set of blocks that precede
it in the pairwise ordering closes fast. With high probability, it
only consists of blocks that were published before or right after
its own publication. Since a transaction might occur in multiple
blocks, Spectre defines equivalence classes on transactions,
also splitting the actual transaction from the fee part.

If two blocks include the same transaction, the fee portion
of the transaction constitutes a double spend. To resolve these
kinds of double spends, Spectre proposes the use of so-called
settlement transactions. The different block producers can
voluntarily sign such a transaction in order to evenly split the
transaction fee and resolve the double spend.

Note that it also is considerably more complex to implement
a difficulty adjustment in a DAG. Spectre ensures that only
a single block is responsible for the difficulty adjustment at
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regular intervals. However, due to the nature of a DAG, one
must also accept blocks with an outdated target around the
time of the adjustment, which can be determined by graph
properties.

A significant drawback of Spectre is that the calculations
used for the block relation are not inherently efficient.

X. SEPARATE ACCOUNT CHAINS

Other recent protocols, such as Nano or Blink, propose
to parallelise and scale blockchains by splitting a single
blockchain into many. In particular, they consider a single
blockchain per account. However, since transactions always
interact with two accounts, care has to be taken about when
and how to update each account chain.

A. Nano

Nano [31] is a block-lattice based protocol, in which each
account has its own blockchain. It is built on top of UDP and
only uses TCP for the bootstrapping process.

Each account chain can only be modified by the owner
and contains different types of blocks. There are open, send,
receive and change blocks. Nano’s full supply is stored in a
genesis account. Their whitepaper does not make clear who
controls this account.

Transactions are split into a sender and a receiver part so
that the receiving account has full control over the order in
which incoming transactions are processed. The sender has
to incorporate a send block into his account chain (which
is considered immutable, once confirmed by a quorum), the
receiver a corresponding receive block. Following from this
separation, transactions can be settled and unsettled. Settled
transactions are such that the receiver has already generated
a receive block, unsettled transactions are not yet part of the
receiver’s account balance. Transactions include a PoW field,
which is solely used as an anti-spam measure.

Each account owner must choose a representative that can
vote on its behalf (which can be the owner itself). The
representative can also be changed using a change block at any
time. The only scenario in which actual voting occurs is upon
detection of a fork. Representatives vote on one of the forked
blocks. Their votes are weighted by the sum of balances of all
accounts that have chosen this representative. The whitepaper
does not go into detail about what happens if both receivers
of a double-spend try redeeming the transactions or how a
roll-back is implemented.

Nano plans on implementing block cementing to prevent
blocks from being rolled back at a certain point in time.

B. Blink

Similarly to Nano, in Blink, every account has its in-
dependent chain of transactions. These independent chains
are managed by an account supervisor (or locker) that is
chosen using a PoS type of election. The protocol is divided
into rounds, and each transaction needs to be assigned a
round. Blink assumes a synchronous network and reduces
communication complexity by a gossip algorithm.

Besides the balance, an account also holds a data field and
a chained transaction hash (CTH). The CTH essentially is
a hash over the address and the ordered list of transactions,
recursively computed as a chain of hashes over the old states.
Moreover, the CTH also contains the hash of the global state
at a previous moment in order to make past transactions
irreversible: Modifying any transaction before that point would
invalidate all subsequent transactions.

Transactions are only valid for given CTHs of sender and
recipient and a given round id. Thus, if there are two incoming
transactions with the same recipient CTH, only one can be
applied.

An account can have more than one locker, and lockers are
chosen using a weighted random selection according to their
stake. Lockers have to lock away collateral. Since lockers can
be randomly reassigned at the beginning of each round, lockers
have to either keep the global state or sync the state of the
respective accounts. A proposed optimisation could swap only
a subset of lockers.

Locker selection is carried out via a weighted function. This
function takes as an input an accounts address, the global
state hash, and the round id. It hashes the input repeatedly
until the resulting hash is not considered biased anymore. It is
unclear whether this approach is sufficient to remove any bias
in locker selection. While the whitepaper does not compare
this approach to a VRF, it seems reasonable that this approach
could be replaced by relying on such a VRF.

A double-spend can only occur if at least one locker signed
two conflicting transactions. In this case, both transactions
will be rejected, and a punishment transaction will take funds
from the locker’s collateral and distribute them. In order to
prevent conflicting transactions across rounds, it is proposed
that transactions need to be signed by lockers from the current
and previous round.

Blink’s global state consists of all participating nodes (i.e.
those who locked away collateral to be considered as a locker),
all accounts, and all system variables. The accounts are stored
in a Merkle Radix Tree, like for Ethereum. Having the system
variables as part of the global state allows to vote and modify
those as part of the protocol.

Blink’s consensus protocol consists of two phases: (1)
proposal and sync, and (2) commitment. During the first phase,
every node computes a Merkle hash over all transactions of
that round (in chunks). This way, two nodes can easily find
differences in their states and sync the relevant transactions.
In the second phase, every node can propose only once the
final set of transactions for that round. Committing to more
than one value will be punished to prevent nothing-at-stake
attacks.

The authors also propose to employ sharding but do not
give any details.

XI. LEADERLESS PROTOCOLS

This section discusses protocols that do not require a
leader or designated committee, either in a closed or in
an open network. The most important protocols presented
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here are HoneyBadgerBFT, Ouroboros-BFT, and Stellar. While
HoneyBadgerBFT and Ouroboros-BFT are only applicable to
permissioned, closed networks without modification, Stellar is
designed for an open setting.

HoneyBadgerBFT is a protocol providing Byzantine fault
tolerance in fully asynchronous networks, by relying on recent
cryptographic techniques and randomisation to overcome FLP
impossibility. Ouroboros-BFT is a BFT protocol inspired by
the PoS blockchain Ouroboros. Stellar is a federated Byzantine
agreement protocol that relies on configurable trust assump-
tions to guarantee safety.

A. HoneyBadgerBFT

The authors of HoneyBadgerBFT [3] argue that timing-
assumptions made by PBFT-like algorithms are ill-suited for
cryptocurrency deployment scenarios. Their main argument is
that an adversary with arbitrary control over the network and
the ability to crash any node at a time can cause PBFT to
halt for arbitrarily long. They note that such an attack is not
specific to PBFT, but fundamental to any protocol that relies
on timeouts to cope with crashes.

Therefore, they introduce the first practical consensus al-
gorithm that does not require timing assumptions. They sig-
nificantly improve over prior work, by reducing redundant
work among nodes and instantiating building blocks with more
recent cryptographic primitives.

Similar to PBFT, HoneyBadgerBFT is designed for closed
and well-defined validator sets only. While, according to the
authors, their protocol could provide a better throughput than
the classical PBFT protocol, using their protocol in a non-
permissioned blockchain scenario requires a trusted party for
the initial setup and for validator set changes. Moreover,
HoneyBadgerBFT relies on relatively new crypto assumptions.
The authors state that in a real deployment, the trusted party
could be replaced by a distributed key generation protocol (c.f.
Boldyreva [32]).

The HoneyBadgerBFT protocol roughly works as follows.
In the setup phase, the trusted party employs a threshold
encryption scheme that allows any party to encrypt a message
to a master public key. To decrypt such an encrypted message,
f+1 nodes can compute and reveal decryption shares that can
be used to recover the original message (f being the number
of faulty nodes). The trusted party creates the master public
key and the secret key shares and hands them to the validators
in the given validator set. Now, for each epoch:

1) Each validator chooses a random set of transactions
(to minimise redundant transactions and thus redundant
work) and encrypts this set using the threshold encryp-
tion.

2) All validators pass their encrypted set to an asyn-
chronous common subset protocol, which is used to
agree on a set of ciphertexts.

3) Collectively decrypt the ciphertexts previously agreed
upon, sort the union over the transactions contained and
append them to a block.

Using a threshold encryption scheme prevents a malicious
party from choosing only such transaction sets that do not in-
clude a specific transaction in step 2). Removing the threshold
encryption would thus result in violating censorship resilience.

In their evaluation, they achieve a throughput of more than
20,000 tx/sec for networks of up to 40 nodes and more than
1,500 tx/sec for networks of 104 nodes.

B. Ouroboros-BFT

Ouroboros-BFT [33] is a protocol designed by IOHK. It
is inspired by Ouroboros [16], a PoS blockchain protocol.
Ouroboros-BFT offers transaction processing at full network
speed, instant confirmations, and instant proofs of settlement.
It is shown to be resilient against 1

3n malicious nodes in a
synchronous network and 1

2n malicious nodes in the covert
adversarial model, which may be enforced through penalty
mechanisms. Ouroboros-BFT assumes a globally synchronised
clock and shows how it can be simulated in a synchronous
network.

The protocol is designed to be simple: It does not rely on
multiple phases. Time is divided into separate, discrete slots
sl1, sl2, . . . . Ouroboros-BFT assumes a closed, well-defined
set of participants. In each time slot, participants execute the
following three steps:

1) Mempool update: Add new, consistent transactions to
the mempool.

2) Blockchain update: If aware of a longer, valid
blockchain, adapt this new blockchain.

3) Blockchain extension: Blockchain production works
round-robin according to the time slots. If the current
participant is responsible for the next block, create a new
block containing all valid mempool transactions. Apart
from the transactions, the block contains the timeslot, a
signature of the timeslot, the hash of the previous block,
and a signature of the block.

Blocks are considered finalised if their slot time is more than
3t + 1 in the past. Other blocks are considered pending.
Transactions acquire their final sequence in the ledger after
5t + 2 ticks of the global clock, with t being the number of
malicious nodes.

For blockchain synchronisation, it is sufficient to download
a set of recent blocks and searching for a segment called a
dense witness.

In order to run Ouroboros-BFT in a permissionless network,
slots can be assigned to epochs, and the set of validators may
change between epochs.

Compared to PBFT [4], Ouroboros-BFT speculatively pro-
cesses all transactions, while transaction serialisation is done
lazily. Communication complexity is reduced to O(n) in the
optimistic case and O(nt) in the worst case, compared to
O(n2) for PBFT. Ouroboros-BFT assumes a synchronous
network for guaranteeing safety, while PBFT provides safety
with unbounded network delays. It has to be noted that
an asynchronous network can lead to temporary forks in
Ouroboros-BFT, which however will be resolved as soon as
the network returns to synchrony.
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C. Stellar

Stellar [34] uses a federated Byzantine agreement protocol.
Thus, each participant has to define a set of other participants
it trusts. This makes the trust model nontrivial, requiring a
correct configuration of trustees by each participant.

The protocol relies on so-called quorum slices. Let a quo-
rum be a set of nodes sufficiently large to reach agreement;
then a quorum slice is a subset of the quorum convincing one
particular participant of agreement.

The consensus protocol votes on statements in multiple
phases: In a first phase, nodes accept a statement under
predefined conditions (e.g. by a quorum). In a second phase,
nodes confirm the statement. The protocol is inspired by
ballot-based approaches such as Paxos [9].

Their main blockchain protocol works by nodes nominating
sets of transactions and the network agreeing and confirming
upon one such set. In order for the nomination protocol to
converge, nodes are assigned a temporary priority, based on
a slot specific hash. A slot is a concept similar to a block,
referring to consecutively numbered updates in a sequentially
applied log.

The Stellar consensus protocol can only guarantee safety
when nodes choose adequate quorum slices and thus depends
upon a user-configurable parameter. Like other BFT proto-
cols, Stellar can suffer perpetual preemption, meaning that
reordering or delaying of messages can arbitrarily delay the
consensus. Additionally, if non-faulty nodes were tricked into
bad commit messages, the only way to unblock their local
consensus is by rejoining under a new identity. Stellar requires
continuity of participants over time since nodes need to rely
on their trustees.

D. Ripple

Ripple [35] implements a low-latency PBFT variant that
is based on collectively-trusted subnetworks and infrequent
membership changes. Ripple publishes a membership list
that participants can edit for themselves. It has been shown,
however, that divergent lists invalidate safety guarantees.

XII. SHARDING

While replacing Nakamoto consensus with PBFT [4] al-
ready increases throughput and decreases commit latency, still
all validators have to redundantly validate and process all
transactions. An increase in participants thus means a gradual
decrease in performance due to the coordination overhead
incurred.

Sharding splits transactions across multiple committees and
thus can scale with the number of validators. Prominent
examples of sharded protocols are RSCoin [36], Elastico [37],
and OmniLedger [22].

OmniLedger is a solution for sharding based on a ByzCoin-
like protocol. While OmniLedger has a flat committee topol-
ogy, Elastico’s topology is hierarchical. However, Elastico
introduces new security assumptions and trades performance
for security. RSCoin uses a central bank and miners that

are authorised by this bank and hence forfeits permissionless
decentralisation.

In general, sharding permissionless blockchains in a Byzan-
tine setting is challenging and only a few protocols exist
aiming to solve this problem.

A. Elastico

Elastico [37] explores sharding in a permissionless setting.
It uses the least-significant bits of the PoW hash to distribute
miners to shards and runs PBFT within each such shard to
reach consensus. A leader shard then verifies all signatures
and creates a global block. Elastico has a high DoS resistance
since the committee is always entirely swapped.

However, Elastico’s shard selection is not bias resistant, as
PoW miners can influence the outcome of the shard allocation.
Moreover, its relatively small shards are prone to high failure-
probabilities: for 16 shards, the failure probability is 97% over
6 epochs. Elastico also does not ensure atomicity for cross-
shard transactions, potentially leaving funds locked forever.
Finally, validators constantly switch shards and thus need to
store the global state.

B. OmniLedger (and ByzCoinX)

OmniLedger [22] is a protocol designed explicitly to scale-
out, i.e. to grow the processing capacity with the number of
validators. To this end, OmniLedger relies on sharding, choos-
ing the shards with a bias-resistant public randomness proto-
col. It also introduces an atomic cross-shard commit protocol.
OmniLedger can support Visa-level workloads, confirming
transactions in under two seconds. It builds on Ouroboros [16],
Algorand [20], Elastico [37], and ByzCoin [19].

OmniLedger separates identity management from transac-
tions and thus runs a separate identity blockchain for validators
to establish their identity and interest to serve in a committee
in the next epoch.

This identity blockchain, as well as the shard assignment,
assume strong synchrony, whereas all protocols inside one
epoch only rely on a partial synchrony assumption.

OmniLedger takes great care to not compromise security or
permissionless decentralisation (in contrast to other solutions).
Thus, it solves the following key challenges:

1) choosing statistically representative groups of valida-
tors via permissionless, Sybil-attack-resistant algorithms
such as PoW or PoS,

2) guaranteeing a negligible probability that any shard is
compromised by forming sufficiently large and bias-
resistant shards,

3) handling cross-shard transactions correctly and atomi-
cally.

While their protocol, in principle, can handle up to 1
3 of

malicious validators, they only describe parameters optimised
for up to 25% of malicious validators.

OmniLedger runs a public randomness or cryptographic
sortition protocol within the prior validator set in order to
choose the next validator set according to the stake distri-
bution. OmniLedger achieves strong bias resistance by using
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RandHound [38], a scalable, secure multi-party computation
protocol that provides unbiasable, decentralised randomness in
a Byzantine environment. The use of RandHound can solve
both the first and second key challenge.

In order to run RandHound for the shard distribution, a
leader is required to coordinate the protocol. This leader is
chosen similarly to Algorand using a VRF. OmniLedger does
not swap out the validators of a shard at once but swaps
them gradually. This enables a continuous service by the
remaining (non-swapped) operators in a shard. Note that the
shard distribution protocol (including RandHound) might take
up to approximately 3 hours using 1800 participants. Thus,
the length of an epoch is chosen to be one day.

The third key challenge, cross-shard transactions, is handled
by a new two-phase lock/unlock protocol called Atomix,
coordinated by a client. OmniLedger shows how to implement
Atomix for either UTXO- or state-based models. In the UTXO
model, the client first submits the transaction to the input
shards, which provide either a proof-of-acceptance or a proof-
of-rejection, locking the funds. A single proof-of-rejection can
be used to unlock the funds in any input shard. The transaction
can be completed in the output shards if all input shards
provided a proof-of-acceptance.

Periodic, consistent state blocks allow clients to easily sync
the current state of a shard without verifying the entire history.
These state blocks are produced by classical distributed check-
pointing principles [39]. The concept of state blocks ensures
that validators do not need to store the full transaction history
and helps to switch between shards.

OmniLedger also introduces ByzCoinX, an improved ver-
sion of ByzCoin [19]. In particular, it enhances ByzCoin to
preserve performance under DoS attacks by adopting a more
robust group communication pattern. Specifically, it replaces
ByzCoin’s communication tree used in CoSi by a two-level
tree, providing better robustness.

Finally, OmniLedger proposes ByzCoinX to make use of
a block-DAG similar to the one proposed in the Inclusive
Blockchain Protocol [29]. The authors observe that conflicts
between transactions can only arise if two transactions try
to spend the same input or if two transactions depend on
each other. Hence, the commitment of other transactions
can be parallelised safely in a block-DAG. OmniLedger also
introduces a two-level approach for transaction verification to
further decrease latency.

XIII. COMMITTEES

While the use of committees can offer significant perfor-
mance benefits, there are also drawbacks that need to be con-
sidered. Namely, committee members are expected to remain
available online during their term. Also, most protocols require
direct communication channels between committee members.
Serving in a committee can also thwart any anonymity prop-
erty of a blockchain. Finally, when designing protocols based
on committees, DoS resistance against committee members
must be considered to ensure liveness.

XIV. OFF-CHAIN SCALABILITY SOLUTIONS

In this section, we discuss off-chain scalability solutions
such as the Lightning Network.

A. Payment Channels

Payment channels aim to establish secure, two-party ledgers
that are kept off-chain but can be enforced on-chain at
any point. They are generally limited to work between two
predefined parties only and need to lock a certain balance
for this purpose. Hence, payment channel networks have
been designed to overcome this problem, allowing to perform
payments even between parties that are not immediately con-
nected. Such networks use a chain of payment channels and
thus need to route payments through a network. REVIVE [40]
shows how locked balances in such a network may be rebal-
anced without on-chain transactions.

However, most payment channel networks still have four
fundamental disadvantages:

1) they require complex routing topologies,
2) since funds are allocated to a two-party payment chan-

nel, any transfer between non-connected parties will
involve fees along the route,

3) payment channels provide only limited privacy guaran-
tees,

4) and most rely on always-online observers to detect and
punish misbehaviour.

There are several types of payment channel networks. For
example, duplex payment channel networks [41] rely on
timelock functionality, while the Lightning Network [42] relies
on punishments to enforce honest behaviour. In Lightning Net-
work, if a malicious transaction is detected, honest observers
are able to claim all funds of the respective channel.

There is also a Lightning Network equivalent for Ethereum
called Raiden network. A competitor of Raiden on Ethereum
is Sprites [43], aiming to minimise the worst-case collateral
costs of indirect payments.

B. Liquidity Network

Liquidity Network proposes a novel structure for payment
channel networks, incorporating off-chain payment hubs. Us-
ing Liquidity Network, a user does not require an always-
online observer. Moreover, it does not require additional
locked funds for additional connections and significantly re-
duces routing costs. In order to promote decentralisation,
they propose that multiple hubs should exist that can be
interconnected.

XV. PRIVACY

In this section, we discuss the privacy-preserving Mim-
blewimble protocol as well as confidential transactions and
BulletProofs. While all those primitives and protocols are
mainly targeted towards privacy, they can also enable better
(or worse) scalability. Using zero-knowledge proofs and com-
mitments to hide amounts can help aggregating values and
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thus reducing the size of the blockchain dramatically. Privacy-
preserving blockchain protocols can reduce the publicised in-
formation to the minimum needed for validation and ordering
of transactions.

A. Confidential Transactions

The notion of confidential transactions was introduced by
Gregory Maxwell and describes transactions for which input
and output amounts are hidden in Pedersen commitments [44].
In order to enable public verifiability, such transactions also
carry a zero-knowledge proof asserting that the sum of inputs
is greater than the sum of outputs and that all outputs are
positive (in the interval [0, 2n] with n being much smaller
than the group size).

Current implementations use range proofs over the commit-
ted values, with the proof size being linear in n. Concretely,
this can lead to a transaction size of 5.4 KB for a confidential
transaction with two outputs and 32 bits of precision. 5 KB
of that size is allocated to the range proof.

A key feature of Pedersen commitments is that these com-
mitments work over prime groups and thus can be easily used
in arithmetic operations.

B. Mimblewimble

Mimblewimble [45], [46] is a recently proposed protocol
that improves upon confidential transactions. It is based on
the realisation of Jedusor [45] that the difference between
outputs, inputs and transaction fee must exactly yield 0, and
that a Pedersen commitment to such a 0 can be viewed as
an ECDSA public key (with the private key known to the
constructor of the commitment). Thus, when constructing a
confidential transaction, a prover can sign the transaction, with
the difference of outputs, inputs and fee being the public key.

Poelstra [46] further improved Mimblewimble and showed
how to compress the blockchain further, so that it only
consists of a small set of block headers, the remaining unspent
transaction outputs and corresponding range proofs, and an un-
prunable 32 bytes per transaction.

C. SNARKs, STARKs and Bulletproofs

Zero-Knowledge Succinct Non-Interactive Arguments of
Knowledge (SNARKs) [47], [48] are succinct zero-knowledge
proofs that, however, require a trusted setup. SNARKs provide
constant-size proofs that are extremely fast to verify. They rely
on strong unfalsifiable assumptions.

STARKs [49] are zero-knowledge proofs that only rely
on collision resistant hash functions. Their proof size grows
logarithmically but is much larger compared to SNARKs and
Bulletproofs. For example, STARKs require a proof size of
200KB for circuits of size 217 at 60 bit security, whereas
Bulletproofs only require 1 KB for 120 bit security.

Bulletproofs [50] are a new non-interactive zero-knowledge
proof protocol providing very short (logarithmic) proofs with-
out the need for a trusted setup. Bulletproofs are not only
well-suited for efficient range proofs on committed values but
can also be used for general arithmetic circuits. Moreover,

Bulletproofs support aggregation of range proofs, proving that
m commitments lie in a given range. Aggregation is done via
a multiparty computation.

Using Bulletproofs, a Mimblewimble blockchain would
only grow with the number of transactions that have unspent
outputs instead of the size of the UTXO set.

In terms of size, SNARKs are the shortest, followed by
Bulletproofs, and lastly STARKs. In terms of verification,
SNARKs are the fastest, followed by STARKs, and lastly
Bulletproofs. In terms of generating the proof, STARKs are the
fastest, closely followed by SNARKs, and lastly Bulletproofs.
Only STARKs are considered post-quantum secure.

D. Zcash

Zcash is probably the most established protocol relying on
SNARKs. In Zcash, zero-knowledge proofs are used to prove
that a transaction is spending a previously unspent coin with-
out publicly revealing which one. This has the considerable
disadvantage that it is impossible to prune past transaction.

XVI. RELATED WORK

Bano et al. [51] present in their SoK paper an excellent
classification and comparison of different consensus protocols.
Focusing on the high-level comparison and systematisation,
the authors do not go into depth regarding how these consensus
protocols function. In contrast, our work aims to provide a
more detailed overview to allow an informed discussion about
consensus protocol details. Hence, their work can be seen as
supplemental literature, providing another angle on the topic.

Garay and Kiayias [52], in their SoK paper, provide a
good overview over different consensus protocol properties
and classify previous work according to those properties. It is
especially well-suited to explore the design-space of consensus
protocols.

XVII. CONCLUSION

While there exists a plethora of protocols, each exploring a
slightly different direction, there is no clear winner in the race
for the best protocol. Instead, there exist trade-offs in every
solution, and the choice of a protocol mostly boils down to
the properties one would like to emphasise.

This paper can serve as a basic overview of these trade-offs
and directions to date. Moreover, it can be used as a collection
of short descriptions and references to the protocols presented
herein.
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APPENDIX

A. DLS

The paper “Consensus in the Presence of Partial Syn-
chrony” [7] presents the so-called DLS algorithm. The authors
thereof were the first to define models for achieving consensus
in a partially asynchronous system. The proposed DLS algo-
rithm works in a series of rounds divided into “trying” and
“lock-release” phases:

In the first phase, each node communicates the value they
believe is correct. The leader then proposes a value if enough
nodes communicated this value. When a node receives a
propose from the leader, it locks on the value and broadcast
this information. If the leader receives enough locks, it commits
to that value.

B. Cryptographic Primitives

1) Verifiable Random Functions: Using one’s secret key sk,
a VRF on any input string x returns two values: V RFsk(x) =
(hash, π). The hash is determined only by sk and x and is
indistinguishable from random to anyone who does not know
sk. The proof π allows anyone knowing the public key pk to
verify that the hash indeed corresponds to the VRFs output
for x.

2) Cryptographic Sortition: Cryptographic Sortition [20]
relies on Verifiable Random Functions (VRF). As an input,
Cryptographic Sortition takes a secret key sk, a seed seed,
a role role, a threshold τ for the expected number of users
selected for that role, the individual’s weight w, as well as the
total weight over all participants W .

It then uses a VRF to determine – proportionally to the
weights – the amount of voting power the participant has with
respect to the input. It returns a hash hash, a proof π, and the
voting power j. Anyone can use these outputs and the public
key pk to verify that the voting power j is indeed correct.
τ needs to be tuned such that enough, but not too many

participants get elected.
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